
Step 1 - Scope of problem (5 minutes) :05pm Step 2 - Assumptions (5 minutes) :10pm

* specific feature(s)/product/service are we building? Why?

* Users

* How many?
* How do they interface with the system? Web? API? Native?

* How frequently do they access the system?

* Is there an expectation of growth? How often (weeks, months)?

* Peak usage hours?

* Are there super users? Or celebrity users? Or tiers of users?

* Any special requirements?

* technology stack?

* Can we leverage any specific infrastructure? E.g., CDN?

* Are there any constraints/key tradeoffs?: Technology/Servers?

Budget? Restrictions?

* Gather maximums

* Caching/data freshness requirements?

* Any “deal breakers”?

* What’s the optimal access and organisation of data?

* Availability/reliability - up time?

Step 3 - Draw Components (10 minutes) :20pm Step 4 - identify key issues (5 mins) :25pm

* Draw major components

* Do back of envelope calculations

* Check reliability

* Identify future things - (out of scope) - like AI stuff

* Get agreement before continuing

* Bottlenecks:

* Bandwidth, throughput, latency

* Read/write/Synchronise operations

* Tradeoffs?

* single points of failure - Quality of service? Reliability/unreliability of
clocks?

* Rate limiting?

* security issues?

* Analytics? Privacy?

* Agree: did we miss anything critical?

Step 5 - Redesign for key issues (15 mins) :40pm Step 6 - Wrap up (5 mins) - :45pm

TOOLS

* Workers

* Message queues

* Database - relational or NoSQL/GraphDB

* CDN

* Other external services

* Horizontal (more servers!)/Vertical scaling (more CPU/memory)

* Load balancer

* Caches

* Servers/shards

* CAP: consistency <=vs=> availability <=vs=> partition tolerance

